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Abstract
The scope of this bachelor thesis is pro-
cedural generation of terrain at run-time,
the placement of vegetation in this ter-
rain, and its adaptability to an anima-
tion curve defining a train track path. It
should therefore be relatively simple to
combine this work with a train simulator.
The main focus was dynamic and fluid
real-time generation of the infinite world
around the camera, and on minimizing
the application stuttering during the gen-
eration itself, i.e. on generating terrain
asynchronously.

Keywords: Terrain Generation,
Procedural Terrain, Height Map, LOD,
Tessellation, Compute Shaders

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Praha 2, Karlovo náměstí 13, E-421

Abstrakt
Náplní této bakalářské práce je procedu-
rální generování terénu za běhu aplikace,
rozmisťování vegetace v tomto terénu, a
jeho přizpůsobivost animační křivce defi-
nující trasu kolejí. Mělo by tedy být rela-
tivně jednoduché tuto práci spojit se simu-
látorem vlaku. Hlavní důraz byl kladen
na dynamičnost a plynulost generování
terénu nekonečného světa okolo kamery
v reálném čase, a na minimalizaci zase-
kávání aplikace při samotném generování,
tedy na jeho asynchronicitu.

Klíčová slova: Generování Terénu,
Procedurální Terén, Výšková Mapa,
LOD, Teselace, Compute Shadery

Překlad názvu: Vytváření 3D scén pro
vlakový simulátor
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Chapter 1
Introduction

This bachelor project’s goal was creating a Unity application which can
procedurally generate terrain for a train simulator, the train simulator itself
was a different project assigned to another student.

The key objectives were to implement procedurally generated terrain, to
distribute vegetation objects (such as trees and bushes) in the generated
world, to generate the world dynamically around a camera, to make the
terrain adapt to the trajectory of the train tracks defined by an animation
curve, to generate the world in real time without undue loading or freezing
of the application, to utilize the capabilities of the GPU for generating the
terrain, and lastly to compare performance of the final product on hardware
of varying performance.

I’ve accepted this assignment because procedural generation is something
I’ve been curious about for a long time. Just like most people my age, I grew
up playing video games. In video games, procedural generation is seen very
often, it can be the game’s defining feature to generate entire worlds from
scratch (Minecraft, Terraria, Elite:Dangerous, No Man’s Sky..), or it can be
used in slightly more subtle ways, such as connecting predefined corridors
and assets to create sprawling dungeons and place both enemies and rewards
within them (Darkest Dungeon, Crypt of the NecroDancer, Spelunky..)

Having been curious about the concept of procedural generation I did have
a vague idea of how it worked - I knew noise functions were used and that
splitting the world into chunks was a good idea, but not much further than
that. After the project I’m much more confident in this area and I’ll be able
to make better choices when dealing with it in the future.
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Chapter 2
Theoretical Background

2.1 Procedural Generation

3D world applications that do not utilize run-time procedural generation
usually use a world of static size and appearance created by 3D artists (though
they might use procedural generation to create these worlds).

Run-Time dynamic Procedural generation in context of terrain [16] is a
process in which just a small part of a potentially infinite world is generated
seamlessly in background. This world is purely defined by parameters which
influence the logic by which it is generated, not by shaping it directly.

While this process is based on pseudo-random noise functions, it does have
the property that for the same input (world coordinates) it will generate the
same output (terrain height). This is useful for making an illusion of a very
large world. When a user moves far away from a part of the world (thus it
is removed from memory) and later comes back to it, it is recalculated with
the same output values. So from the user’s perspective it is indistinguishable
from there being one large world at all times.

2.2 Terrain Chunk

One of the most common concepts when dealing with procedurally generated
worlds is a ’chunk’. A chunk is a part of the terrain of predetermined size, it
is common to have chunks with static width and depth and infinite height.
By splitting the world into these chunks, it becomes possible to implement
terrain generation for a single chunk and then connect them by placing them
in the correct positions in the 3D scene.

With this approach, having a configurable chunk render distance (i.e. the
maximum distance from the camera in which chunks appear) becomes rather
simple and it translates to the users of the application being able to set their
preferred ratio between performance and render distance.

In applications which support changing the terrain, such as games which
include mining, having the world split into chunks is also quite handy because
it makes it possible to save the generated world (and any user-made changes
to it) in a file per each chunk for example.

3



2. Theoretical Background ................................

Figure 2.1: Three outlined chunks in the Unity editor

2.3 Mesh vs Height-map Generation

Mesh based terrain generation consists of creating the geometric representation
of terrain directly. A mesh most often consists of an array of vertices which are
3D points consisting of three 32-bit floating point coordinates, and an array of
(16 or 32 bit) integers which are used to index into the vertices array. Then,
every three indices represent a single triangle of geometry. This approach is
(in vast majority of meshes) more memory efficient than duplicating vertex
data any time two or more triangles need to share a vertex.

A height-map [15] is a gray-scale 2D texture which, instead of representing
color at any given point, represents geometry displacement. In the context
of terrain, a height-map represents displacement in whichever axis is the
"up/down" axis (Y in Unity).

Mesh generation is less memory efficient than height-mapping because each
point in space has to be represented by three 32-bit floating point values and
one or more (16 or 32 bit) integer index values. Height-mapping a point in
space, on the other hand, requires only one 16 or 32 bit value.

An advantage of mesh generation is that it can (more easily) represent
terrain with caves for example. A 2D height-map, being a 2D array of height
values from top-down perspective of the terrain, can’t represent more than
one height value per point on the imaginary map. With mesh generation the
chunk of terrain can have many overhanging ledges, caves etc.

In this bachelor thesis I first implemented mesh generation before I switched
to height-maps and tessellation.

4



.................................... 2.4. Level of Detail

2.4 Level of Detail

Level of Detail [13], commonly referred to as LOD, is used to alleviate
the GPU from having to render detailed geometry in situations when it is
indistinguishable from rendering a version of that geometry with reduced
level of detail, at the cost of some CPU resources.

LODs are typically numbered in such a way that LOD0 (LOD zero) is/has
the highest quality geometry and LOD1, LOD2 and so on keep decreasing
in quality. In other words, higher LOD number should mean lower quality
geometry.

There are a few ways to choose which level of detail should be rendered
in a given frame. The simplest is to choose an LOD based on distance to
camera, while more complicated solutions (like what Unity uses as a built-in
LOD solution) try to estimate the amount of pixels the object is going to
take up on the screen.

Naturally, the further away from the camera the object is, and the less
pixels it is estimated to take up, the lower resolution LOD should be used.

Figure 2.2: Chunk close to the camera (LOD0)

5



2. Theoretical Background ................................

Figure 2.3: Chunk far from the camera (LOD3)

2.5 Tessellation

In computer graphics, tessellation [17] [18] is a process on the GPU in which
triangles can be recursively split (subdivided) into more triangles in real
time. This is of course slower than subdividing a mesh beforehand and then
rendering it, but it’s power lies in being able to dynamically change which
parts of the mesh get tessellated, and how much, via shaders.

Tessellation is almost exclusively used with height-maps. If a mesh is
tessellated but the newly created triangles aren’t displaced, and thus multiple
triangles are now used in place where one would look the same, then tessella-
tion adds overhead and no visual fidelity. If the newly created triangles can
access a height-map to sample displacement, however, it becomes possible to
dynamically change the level of detail of meshes.

The typical use-case is to increase the tessellation factor when distance to
camera decreases so that more triangles are only rendered if they’re going to
be seen. This can be used alongside (or in place of) more traditional Level
Of Detail.

Figure 2.4 shows how this bachelor thesis uses tessellation. Tessellation
factor, which controls how many times triangles get subdivided, decreases
with increasing distance to camera.

6



................................... 2.6. GPU Parallelism

Figure 2.4: Decreasing tessellation factor based on distance to camera on the
right

2.6 GPU Parallelism

Cores of graphics cards are slower than processor cores, and are capable of
much less instructions. The GPU has many more cores though, for example a
modern consumer grade CPU has anywhere from 4 to 24 cores, but a modern
GPUs have thousands of cores even up to about 16000. Another difference is
that GPUs handle conditional statements much less efficiently than CPUs, it
must be noted that GPUs have been getting better and better at them, but
they’re still nowhere near as good at them as CPUs.

Therefore, algorithms which don’t require (a lot of) conditional statements
and can be split into many independent parts can potentially see massive
performance gains if implemented on graphics cards instead of processors.
The obvious example is most image processing algorithms, where the color
processing of each pixel can be run in parallel.

Figures 2.5 and 2.5 show how CPUs and GPUs respectively handle a
problem which can be split into many independent parallel parts. It doesn’t
matter which specific problem is being represented, but if we think of these
figures as showing image processing, then the red squares represent pixels
which haven’t been processed yet, blue squares represent pixels which are
currently being processed and green squares represent pixels which have
already been processed. Note that the CPU (2.5) can only work on a small
subset of the problem at a time, while the GPU (2.6) can work on a very
large subset of it. Even though the processing speed of each individual pixel
is likely faster on the CPU, the GPU solves the problem much faster overall
because of its immense potential for parallelism.

7



2. Theoretical Background ................................

Figure 2.5: CPU parallelism

Figure 2.6: GPU parallelism

2.7 Compute Shaders

Following on from the previous section, a shader is a program that executes
on a graphics card. There are many kinds of shaders. To name a few, vertex
shaders are run on each vertex of a mesh that is being rendered and fragment
shaders are run to calculate colors for pixels.

8



................................... 2.8. Noise Functions

Unlike vertex and fragment shaders, Compute shaders [14] don’t imply
usage in rendering. Their usage is heavily parallel computing of independent
data. In my bachelor thesis, I make use of compute shaders to calculate noise
functions from which believable terrain can be constructed.

Figure 2.7 shows a very simple compute shader which computes lengths
of 4D vectors in parallel. Realistically, compute shaders should be employed
for more complicated tasks as time spent sending data to and from the GPU
might be greater than the speed improvements of GPU parallelism.

Figure 2.7: Simple compute shader

2.8 Noise Functions

Noise functions are very commonly used as a primitive for procedurally
generated textures, meaning their samples are usually combined in some way.
Noise functions can have many dimensions, but 2D and 3D functions are
most common in graphics.

Value noise functions assign pseudo random numbers to lattice points
and interpolate between the surrounding lattice points, while Gradient noise
functions assign gradients to the lattice points and interpolate between
gradient dot products.

To generate terrain in the Unity application, I use Simplex noise (2.8), it
is a gradient noise which is simpler to calculate and generates less directional
artifacts than classic Perlin noise.

9



2. Theoretical Background ................................

Figure 2.8: Simplex noise

2.9 Other Student’s Work

2.9.1 Models of 3D Scenes for a Driving Simulator by Petr
Brachaczek

In his bachelor thesis [7], Petr Brachaczek was tasked with creating a large
static 3D environment around a road. The main differences between his
approach to world creation and mine is the way we use procedural generation
and how we adapt terrain to the road/tracks.

He used a software called World Machine which uses procedural generation
to create terrain, so while his scene is static, mine is generated dynamically
at run-time in a radius around a camera object. His approach has better
potential for visual fidelity (because of the option of manual tweaking of
terrain), while mine makes it so that there is functionally an infinite world.

To make the terrain adapt to the road, he used a top down gray-scale map
where black signified the road and white signified terrain. The path of train
tracks in my bachelor thesis is given by an animation curve, so I calculate
the distance from the curve for every generated point of terrain and use a
sine based weight function to determine how much should the terrain adapt.

2.9.2 Procedural model generation from real maps by Jana
Kejvalová

In her master thesis [8], Jana Kejvalová was tasked with using procedural
generation to create a realistic model from a 5x5km map. Just like Petr
Brachaczek’s (2.9.1), her assignment also tasked her with creating a static
scene, and she also used World Machine (as well as other, open source,

10



.................................2.9. Other Student’s Work

software).

2.9.3 Procedural generation of videogame environments by
Jan Kutálek

In his bachelor thesis [9], Jak Kutálek used Houdini Engine to create software
which can utilize procedural generation to make mazes for video games, the
mazes can then be used in other game engines.

2.9.4 Creation of modular 3D assets for videogames by Alena
Mikushina

In her bachelor thesis [10], Alena Mikushina examined modelling techniques
and modular design. In the practical part, by combining procedural generation
and modular design, she achieved quick creation of modular assets.

11
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Chapter 3
Implementation

3.1 Overview and Data Flow

This section serves as a brief summary of the application implementation.

Figure 3.1: Data Flow

13



3. Implementation....................................
Figure 3.1 explanation:
Procedural Generation Manager reads Camera’s position and decides

where to place Terrain Chunks, which it also allocates. When Terrain Chunks
are placed, the manager also sets LOD for each of the chunks based on it’s
distance from the Camera.

When the chunk’s LOD is set to a higher quality level than it currently is
set to, it will ask Compute Shader Chunk Generator to asynchronously
generate all terrain data for that LOD (height-map, normal-map, texture,
vegetation placement). A cancellation token is included in the request so that
the generator can tell if the request is no longer needed/valid.

The generator dispatches compute shaders to generate the chunks. It is
limited how many shader instances can be dispatched each frame so as to
not cause freezing/stuttering of the application (all compute shaders have
to finish before the GPU starts rendering the scene). The order in which
the chunks have their terrain generated depends on their distance to camera,
angle to camera (which both change in time) and the LOD level. When the
shaders finish, the corresponding chunk’s callbacks are used to transfer the
terrain data into it.

When a chunk gets too far away from the camera, either it’s level of detail
is decreased, in which case the textures it received from the generator are
returned to a texture cache and vegetation data is de-allocated, or it is
disabled and the manager puts it back into the chunk cache.

3.2 Implementation Details

3.2.1 External Code

There are only two instances of external code in the software project. One is
a Vector Swizzle Extension class [3] to add swizzling to Vectors. The other is
the srdnoise [4] function in srdnoise.hlsl, which has been copied from Unity’s
Mathematics package and edited to run in a shader.

3.2.2 Procedural Generation Manager

This class has three main responsibilities:
Dynamically instantiating and caching and placing chunks around a Camera,

setting appropriate LOD levels of the chunks, and creating a single quad
mesh which every chunk uses to render itself.

Chunk placement and LOD

In order to determine which chunks should be added and which should be
removed, the manager keeps two sets of data: a set which contains positions of
chunks that have been placed in the scene, and a set which contains positions
of chunks that should currently be in the scene. The latter set doesn’t have

14



................................ 3.2. Implementation Details

to be kept in-between updates, but doing so allows reusing already allocated
heap memory.

Generating the positions of chunks which should currently exist around
the camera position is done by preparing an empty set, getting the camera’s
current position, getting the maximum distance for the lowest-quality LOD
(the assumption being that the lowest-quality LOD will have the greatest
maximum distance), and finally looping through positions of chunks which
are close enough in X and Z axis separately (i.e. close enough by Manhattan
distance) and adding the positions which are close enough in Euclidean
distance to the aforementioned set.

In figure 3.2, the circle represents the camera’s position, the squares (both
red and green) represent all positions within camera’s Manhattan distance
and the green squares represent the positions within camera’s Euclidean
distance (which are also the positions of chunks that should currently exist
in the scene)

Figure 3.2: Chunks around camera diagram

15



3. Implementation....................................

Figure 3.3: Chunks around camera code

When the current positions of chunks (set C) have been calculated and
the previous (old) positions of chunks (set P ) are still saved in memory, the
positions of chunks which should be added to the scene (blue set A in figure
3.4) as well as the positions of chunks which should be removed from the
scene (red set R in figure 3.4) can be determined using the set difference
operation such that A = C − P , R = P − C.

The positions of chunks that should be kept in the scene, that is not removed
nor added, (green set K in figure 3.4) can be calculated as K = C − A, but
this doesn’t need to be calculated in the application.

Figure 3.4: Set operations on chunks
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The LOD level of each chunk is determined using it’s distance to the camera
and known max distances each LOD has. The index of the first LOD the
maximum distance of which is greater than the chunk’s distance to camera is
set as the chunk’s LOD level (see code snippet in figure 3.5).

Figure 3.5: Code: Determining LODs for chunks

To optimize performance and keep the application from stuttering, ev-
erything mentioned in this section happens only when the camera actually
leaves the chunk it is in (which is comparatively much simpler to determine
each frame) and it is all calculated on a background thread asynchronously
(potentially during multiple frames).

Quad Geometry Creation

When the application is starting, the manager creates a square quad mesh
[12] which is made up of smaller squares. The size of the mesh as well as
the amount of smaller squares within is adjustable. The final version of the
application uses 1600 by 1600 meter quads which are made up by 256 (16 by
16) smaller quads.

Using height-maps and tessellation on this quad mesh, the chunks can
appear highly detailed in close proximity to the camera, while taking up little
GPU resources at a distance.

3.2.3 Compute Shader Chunk Generator

This Unity Monobehaviour is tightly coupled with the shaders it needs to do
its job, therefore I’m putting them both in this section.

The Unity Monobehaviour

The chunk generator’s main responsibility is to dispatch (run) compute shaders
on the GPU which calculate terrain height-maps, normal maps, textures, and
vegetation positions for chunks in the scene. The reason it isn’t simply called
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3. Implementation....................................
"chunk generator" is because there is also an unused Thread Pool Chunk
Generator, which uses CPU cores for these operations instead.

It also contains the points of a Catmull-Rom spline which indicates where
the train tracks of a train simulator would be. During startup, it calculates
samples of positions on the curve using the Catmull-Rom base matrix, which
it then sends to the GPU so that the compute shaders can adapt the generated
terrain to it.

Once a request for generating the maps is made, the generator puts it on a
dynamic priority queue (see 3.2.4). The generator uses a Unity co-routine in
order to spread it’s operations across many frames so that it doesn’t freeze
the application until all requests are handled. In this asynchronous manner,
it:

. Optionally reorders the request queue. It does so if the camera has moved
into a new chunk, the direction it was looking at changed significantly,
or new requests have been added. This is to ensure the priority is
dynamically given to chunks depending on their distance and angle to
camera and LOD level. See figure 3.6

. Dispatches shaders to create maps for a limited number of chunks and
also limited by the total amount of map pixels that can be generated
each frame. This is because rendering cannot begin before compute
shaders are finished processing, so 4k maps for example would make the
application stutter/freeze. The final version of the application has this
limit set to 1024 pixel resolution, therefore a 4k map computing will be
split across at least 16 frames.

. Handles assigning vegetation positions, rotations and scale factors to
chunks. This step requires possibly waiting multiple frames, because get-
ting data back from the GPU is rather slow and happens asynchronously.

Figure 3.6: Code: Reordering request queue if needed
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................................ 3.2. Implementation Details

Figure 3.7: Code: Chunk generator’s coroutine’s update loop

The Compute Shaders

Generate Chunk Shader and Calculate Elevation Shader are used by
the Compute Shader Chunk Generator to generate the needed maps
and vegetation elevations respectively.

The most important part of both of these shaders is the function for
calculating terrain height at a specific point. It’s argument is a 2D world
position at which to calculate the height, and its outputs are the calculated
height adapted to the train tracks (see figure 3.8) and the distance to them (the
tracks are defined by samples stored on the GPU that have been calculated
by the generator).

Figure 3.8: Adapting the calculated height to the tracks
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3. Implementation....................................
The distance to train tracks is calculated by connecting each two adjacent

spline samples by a line segment, then calculating the distances from the
point in the world to each of the line segments (see figure 3.9), and finally
returning the minimum of these distances (see figure 3.10).

Figure 3.9: Vector to the closest point on a line segment

Figure 3.10: Vector to the closest point on the tracks

The shader generates what looks to be believable terrain by sampling [1]
simplex noise many times. If it only sampled the noise a single time (or a
just a few times), the resulting terrain would look extremely simplistic and
unnaturally smooth (see figure 3.12). To add variation and roughness to
the terrain, the noise function is sampled many times (25 in the final build)
with ascending frequency and descending amplitude as well as changing offset
and rotation (see figure 3.11). This way, the low frequency high amplitude
samples will shape the terrain’s mountains, while the higher frequency lower
amplitude samples will shape smaller hills, mountain details and ground

20



................................ 3.2. Implementation Details

irregularities. The screenshots after this text show the difference between 1
(figure 3.12), 5 (figure 3.13), 10 (figure 3.14) and 25 (figure 3.15) samples, as
well as what can happen (because of floating point number rounding errors)
when sample count is set too high (figure 3.16).

The normal map is calculated by sampling 3 height values per pixel (where
one of these values goes into the Height-Map) and then using cross products
to get the normal vector. At one point I’ve implemented the normal map
calculation by using analytical derivatives, but I’ve found that the sampling
approach looks better most of the time, especially on distant chunks which
have very big gaps between samples.

Figure 3.11: Sampling simplex noise

Figure 3.12: Terrain using 1 sample
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Figure 3.13: Terrain using 5 samples

Figure 3.14: Terrain using 10 samples

Figure 3.15: Terrain using 25 samples
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Figure 3.16: Terrain using 68 samples (broken because of floating point inaccu-
racies)

3.2.4 Reorderable Priority Queue

This class is mainly used by the generator to encapsulate the logic of reordering
the chunk request queue. It has En-queue and De-queue methods to push
and pop elements from it, and a Reorder method to sort the elements based
on a newly computed priorities.

This method has to have a way to compute a priority for each element, and
normally the way to express that in C# would be using Func<TValue,TPriority>
(a reference to a function accepting an element from the queue and returning
a priority value which can be compared to other priority values). The down-
side is that this approach implies every call to this function is dynamically
dispatched at runtime, which could slow down the reordering.

Instead, I’m using an interface that acts as a substitute to a function
reference. By using generic constraints to make sure the object being used as
the de-facto function pointer is a struct, it is possible to inline the method
computing the priority.

Figure 3.17: Priority Computer Interface

3.2.5 Terrain Chunk

The terrain chunk’s lifetime and placement is done by the Procedural
Generation Manager (3.2.2) and it’s terrain data (height-map, normal
map, texture) is calculated by the Compute Shader Chunk Generator
(3.2.3).

Responsibilities of the terrain chunk are:
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3. Implementation....................................
. Holding it’s terrain data

.Knowing which LOD level it is supposed to be using ("wanted" LOD
level)

. Requesting for the generator (3.2.3) to calculate terrain data based on
wanted LOD level

. Not holding onto terrain data of LOD level lower (better) than wanted
LOD (when wanted LOD level is set to a lower quality LOD than it
was previously, the chunk will free (or return to cache) the resources
associated any LOD level lower (better) than wanted LOD)

. Using the highest quality LOD level available to it (it will use LOD levels
of lower quality if it’s wanted LOD level hasn’t been calculated yet)

To render itself, the terrain chunk uses a tessellation shader created in
Unity’s shader graph [19]. This shader, meant to run on a quad mesh with 0
height, takes a height-map and uses it for tessellation vertex displacement.
The shader reduces the tessellation factor (i.e. the amount of times a triangle
is subdivided) based on the distance to camera, as can be seen in figure 3.18
(also 2.4).

Figure 3.18: Tessellation factor decreasing with distance to camera

The terrain data each chunk holds also includes an optional (nullable)
array of matrices which represent the translation, rotation and scale of the
chunk’s vegetation. I first tried keeping vegetation as Unity Game Objects,
but that resulted in very slow rendering. Only keeping the TRS matrices and
calling Unity’s Graphics class to render the vegetation significantly helped
performance. Only two vegetation models are used, a tree [6] and a bush [5].
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3.2.6 Burst Friendly Cancellation Token Source

The cancellation token source is a simple class used for cancelling any opera-
tion. It can hand out cancellation tokens, each cancellation token is capable of
checking if cancellation has been requested on the source. It is heavily inspired
by CancellationTokenSource from the .Net standard library, though it is
much simpler in its implementation.

The main usage in the final application is to create a cancellation token
source for every request a chunk makes to the chunk generator, and cancel
the request if the chunk gets disabled (that is, if the manager removes it from
the scene).

The "burst friendly" part of the class’s name means that it can also hand
out special cancellation tokens which can be used in native code outside of
the context of the garbage collector. That is needed in order to check for
cancellation in burst compiled functions. I didn’t bring attention to what
a "burst compiled" function is in the Theoretical Background (2) chapter
because while I used them during development, I have switched to using GPU
shaders instead.

Regardless, I’ve continued using this class for cancellations in the managed
environment (where the garbage collector is handling object lifetimes) even
though I don’t have a use for the "burst friendly" aspect anymore.

3.2.7 Lighting, Clouds, Shadows, Water, Fog

I used Unity’s HDRP (High Definition Render Pipeline) to add a sun, physi-
cally based sky, volumetric clouds, volumetric fog, dynamic shadows, and a
water level with caustics into the project. The introduction of these aspects
was therefore just a matter of setting up the HDRP profile. Figure 3.19 shows
how clouds were set up as an example.
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Figure 3.19: Setting up clouds in Unity

3.3 Hurdles And Workarounds

3.3.1 Texture2D Allocation

Texture2D, which is a class that needs to be used to create a texture at
run-time in Unity, normally exists in both the CPU memory (RAM) and
GPU memory (VRAM). There’s no way to tell Unity not to allocate the CPU
side of this texture, therefore the workaround is to first create it, then call
Apply() with a boolean parameter which uploads whatever is in the CPU
side to the GPU side.

The upload operation unfortunately creates noticeable stutter for larger
textures (4k), I implemented a texture pool so that this stutter only happens
at the beginning of the application before stabilizing, but in the end even
that initial stuttering was quite distracting, so I opted not to clear the
CPU memory since there’s no way to truly get rid of it’s negative effects on
frame-rate smoothness.

The one texture type that can be created just on the GPU side is Render-
Texture, but that texture type is more volatile - it can be deallocated outside
of my control on certain events, so I couldn’t use it in place of Texture2D.

3.3.2 Vegetation Asymptotic Complexity

When I first implemented vegetation by storing only each instance’s translation-
rotation-scale matrix, it seemed to be very slow and I didn’t know why. It
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turned out that when creating those matrices, I forgot to clear the buffer
into which I was saving them before copying them into an array, therefore
every chunk that had vegetation was rendering it’s own vegetation AND all
vegetation of previous chunks, resulting in O(N2) complexity.

3.4 Unused Classes

3.4.1 Thread Pool Chunk Generator

A chunk generator that had very similar function to the Compute Shader
Chunk Generator (3.2.3), the main difference being it used a custom thread
pool to generate all terrain data on the CPU. I’ve chosen this approach at
first because I was more familiar with implementing these algorithms on the
CPU than on the GPU (not to mention anything written to run on the GPU
is harder to debug) and because I thought it’d be fast enough.

After implementing a non-trivial terrain function, I realized this approach
was just too slow. 32x32 textures were being computed in a manner of
milliseconds and 512x512 textures took about half a second to compute. That
speed was acceptable, but 4K textures (4096x4096) took between 10 and 15
seconds each. 4K textures are used for the highest quality LOD, and it took
away from visual fidelity of the application to have to wait this long for a
newly entered chunk to become more detailed.

3.4.2 Blocking Priority Queue

This priority queue was similar to the Reorderable Priority Queue (3.2.4)
with the main distinction being it was also thread safe (safe for concurrent
usage by multiple CPU threads).

This was needed back when the chunk generator being used ran on a thread
pool (3.4.1) as opposed to using compute shaders (3.2.3). After I stopped
using the thread pool chunk generator, I also decided to rewrite this queue
into a single-threaded version (3.2.4) to get rid of the now needless complexity
of thread safety.
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Chapter 4
Results

4.1 Limitations

4.1.1 Not Combined With Train Simulator

The bachelor thesis was meant to ideally be combined with a bachelor thesis
of another student (who was working on a train simulator). The assignments
of our individual theses were formulated so that they’d be defendable without
combining them, but it would’ve been nice to have them combined. Neither
of us had time to spend on combining them unfortunately.

4.1.2 No UI or Settings

I was planning on making a simple UI in which the user would be able to
change some parameters of world generation, including the maximum LOD
distances, texture resolutions corresponding to LOD levels, the amount of
vegetation, and last but not least the train track spline.

These values aren’t hard-coded though, they’re set up as Unity’s Serial-
izeField private fields, from which I load values at scene startup. It wouldn’t
require any major changes to allow for UI settings, but I unfortunately ran
out of time to implement this feature.

4.1.3 Lack of Textures and Simplistic Height-Based Coloring

I planned to add seamlessly tiled textures with normal maps for sand, grass,
rocks and snow and use them on the terrain instead of the simple 4 color
system. Also, I’d have liked to map the locations of these biomes using
a separate noise function and make the divisions/borders between them
smoother.

4.1.4 Smooth Normals Around the Track

Because of the way I’m handling terrain adaptation to the track (that is, by
using a weight function to interpolate between the noise-generated elevation
and the spline-defined track height, see 3.8) the normals around the tracks
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4. Results .......................................
are somewhat too smooth. In other words, the terrain around the tracks
maps the weight function too closely for my liking.

I’d have liked to keep some more terrain irregularities and/or add another
layer of normal mapping via detailed sand/grass textures (as discussed in the
previous subsection) but, while it’d add visual fidelity, I’ve had to prioritize
other aspects of the application to finish this bachelor thesis in a timely
manner.

4.1.5 Vegetation Rendering

The vegetation, as it currently stands, even after making it O(N) instead of
O(N2) (see 3.3.2), couldn’t be set to appear more often or render very far. I
unfortunately didn’t have much time to implement proper vegetation LOD
or other optimisations.

4.2 Benchmarks

4.2.1 Testing Methodology

For testing, a build of the application was made with a specific camera
rotation and orientation. Camera wasn’t moved or rotated in the benchmark.
Frames per second were benchmarked on several systems after the initial
world generation overhead when all of the generation was finished. See figure
4.1 for a screenshot of benchmarked scene view.

Figure 4.1: Benchmark scene view
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4.2.2 Benchmark results

System Type Processor Graphics Card Resolution Average FPS
Laptop Intel i9-11980HK Nvidia RTX 3080 1920x1080 132
Desktop AMD Ryzen 7 3800X Nvidia RTX 3070 2560x1440 87
Desktop AMD Ryzen 5 5600X AMD RX 580 1920x1080 30

Table 4.1: Benchmark table

It should be noted that the application takes up about 7.4GB of VRAM.
In terms of performance of terrain generation itself (not just the per-frame

rendering which is the main contributor to the FPS results) it was very fast
on every system tested - after the initial 20 seconds to a minute when the
entire radius around the camera generated for the first time there wasn’t any
noticeable generation overhead. Any time a camera entered a new chunk,
all the chunks that were added or had their LOD updated finished doing so
before the camera could move to another new chunk. Given the fairly high
speed of the camera, I’d say the speed at which terrain was generated was
very quick owing to the speed of compute shaders.

I had an opportunity to run the application on one more system (AMD
Ryzen 7 3800X CPU, AMD RX Vega 64 GPU), but it would always crash
when starting. Reading the crash dump files, I was able to determine the
problem was that the graphics API (vulkan) didn’t support video decoding
to textures on that system. I think the application crashes with this error
because I use Render Textures (textures which can be written to on the GPU)
to represent the generated terrain.

When I tried using different graphics APIs, I’ve found that the application
won’t even start on my machine using DX12, and it won’t show vegetation
nor adapt terrain to train tracks on DX11, possibly because those rely on
compute buffers.

4.2.3 Benchmarks Conclusion

Aside from the system on which the application wouldn’t run, I think the
performance, even though it could always be better, isn’t bad. When iterating,
I could only see performance on my machine (the laptop from the results
table), which I aimed to get above 100 frames per second at least. On a
similarly modern system which uses an RTX 3070 GPU, the performance
isn’t bad either, especially when considering the increased monitor resolution.

I was worried how the application would run on slightly older mid-range
systems, in the end the results on the RX 580 GPU ended up being better
than I expected. 30 frames per second, while not the smoothest, is still
serviceable. To put the performance in perspective, the vast majority of
games on the immensely popular Play-Station 4 gaming console (which was
being manufactured and sold in the years 2013-2020) ran at 30 frames per
second, too.
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4.3 Screenshots

Figure 4.2: Terrain adapted to train track spline

Figure 4.3: Lakes around train track spline
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Figure 4.4: Water, sun and clouds

Figure 4.5: Cloud shadows
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Figure 4.6: Shadows on rocky terrain

Figure 4.7: Lowlands
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Figure 4.8: Lowlands

Figure 4.9: Terrain adapted to train track spline
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Figure 4.10: No vegetation on train track
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Chapter 5
Conclusion

Even though I didn’t manage to complete every goal I set for myself in this
bachelor thesis, I’m still pleased with how it came out. The performance
of the final product is acceptable in my eyes, I think the main goals the
assignment set for the project have been fulfilled, and I’ve certainly learned a
lot during development not just about procedural generation, but also about
writing shaders and optimizing performance in Unity.

As I mentioned in the introduction, procedural generation is a widely used
technique which I’ll surely encounter very often in my professional life in the
future. As such, this bachelor thesis was extremely valuable to me as the first
(major) encounter with procedural generation, not to mention enjoyable to
write, barring fighting some of Unity’s peculiarities on the way.

I’d also like to take this opportunity to once again express my gratitude
to the supervisor of this bachelor thesis, doc. Ing. Jiří Bittner, Ph.D.
for his very helpful advice throughout the entire development process, for
steering my focus on the important aspects of the project, and for giving me
valuable feedback for writing this bachelor thesis after the software project
was completed.
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